4 research outputs found

    Fluorescence2D: Software for Accelerated Acquisition and Analysis of Two-Dimensional Fluorescence Spectra

    Get PDF
    The Fluorescence2D is free software that allows analysis of two-dimensional fluorescence spectra obtained using the accelerated “triangular” acquisition schemes. The software is a combination of Python and MATLAB-based programs that perform conversion of the triangular data, display of the two-dimensional spectra, extraction of 1D slices at different wavelengths, and output in various graphic formats

    Fluorescence of Supported Phospholipid Bilayers Recorded in a Conventional Horizontal-Beam Spectrofluorometer

    Get PDF
    Supported phospholipid bilayers are a convenient model of cellular membranes in studies of membrane biophysics and protein-lipid interactions. Traditionally, supported lipid bilayers are formed on a flat surface of a glass slide to be observed through fluorescence microscopes. This paper describes a method to enable fluorescence detection from the supported lipid bilayers using standard horizontal-beam spectrofluorometers instead of the microscopes. In the proposed approach, the supported lipid bilayers are formed on the inner optical surfaces of the standard fluorescence microcell. To enable observation of the bilayer absorbed on the cell wall, the microcell is placed in a standard fluorometer cell holder and specifically oriented to expose the inner cell walls to both excitation and emission channels with a help of the custom cell adaptor. The signal intensity from supported bilayers doped with 1 % (mol) of rhodamine-labeled lipid in the standard 3-mm optical microcell was equivalent to fluorescence of the 70–80 nM reference solution of rhodamine recorded in a commercial microcell adaptor. Because no modifications to the instruments are required in this method, a variety of steady-state and time-domain fluorescence measurements of the supported phospholipid bilayers may be performed with the spectral resolution using standard horizontal-beam spectrofluorometers

    \u3cem\u3eIn Vitro\u3c/em\u3e Biosynthesis and Chemical Identification of UDP-\u3cem\u3eN\u3c/em\u3e-acetyl-d-quinovosamine (UDP-d-QuiNAc)

    Get PDF
    N-acetyl-d-quinovosamine (2-acetamido-2,6-dideoxy-d-glucose, QuiNAc) occurs in the polysaccharide structures of many Gram-negative bacteria. In the biosynthesis of QuiNAc-containing polysaccharides, UDP-QuiNAc is the hypothetical donor of the QuiNAc residue. Biosynthesis of UDP-QuiNAc has been proposed to occur by 4,6-dehydration of UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) to UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexulose followed by reduction of this 4-keto intermediate to UDP-QuiNAc. Several specific dehydratases are known to catalyze the first proposed step. A specific reductase for the last step has not been demonstrated in vitro, but previous mutant analysis suggested that Rhizobium etli gene wreQ might encode this reductase. Therefore, this gene was cloned and expressed in Escherichia coli, and the resulting His6-tagged WreQ protein was purified. It was tested for 4-reductase activity by adding it and NAD(P)H to reaction mixtures in which 4,6-dehydratase WbpM had acted on the precursor substrate UDP-GlcNAc. Thin layer chromatography of the nucleotide sugars in the mixture at various stages of the reaction showed that WbpM converted UDP-GlcNAc completely to what was shown to be its 4-keto-6-deoxy derivative by NMR and that addition of WreQ and NADH led to formation of a third compound. Combined gas chromatography-mass spectrometry analysis of acid hydrolysates of the final reaction mixture showed that a quinovosamine moiety had been synthesized after WreQ addition. The two-step reaction progress also was monitored in real time by NMR. The final UDP-sugar product after WreQ addition was purified and determined to be UDP-d-QuiNAc by one-dimensional and two-dimensional NMR experiments. These results confirmed that WreQ has UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexulose 4-reductase activity, completing a pathway for UDP-d-QuiNAc synthesis in vitro

    Allosteric Activation of the Par-6 PDZ Via a Partial Unfolding Transition

    Get PDF
    Proteins exist in a delicate balance between the native and unfolded states, where thermodynamic stability may be sacrificed to attain the flexibility required for efficient catalysis, binding, or allosteric control. Partition-defective 6 (Par-6) regulates the Par polarity complex by transmitting a GTPase signal through the Cdc42/Rac interaction binding PSD-95/Dlg/ZO-1 (CRIB-PDZ) module that alters PDZ ligand binding. Allosteric activation of the PDZ is achieved by local rearrangement of the L164 and K165 side chains to stabilize the interdomain CRIB:PDZ interface and reposition a conserved element of the ligand binding pocket. However, microsecond to millisecond dynamics measurements revealed that L164/K165 exchange requires a larger rearrangement than expected. The margin of thermodynamic stability for the PDZ domain is modest (∼3 kcal/mol) and further reduced by transient interactions with the disordered CRIB domain. Measurements of local structural stability revealed that tertiary contacts within the PDZ are disrupted by a partial unfolding transition that enables interconversion of the L/K switch. The unexpected participation of partial PDZ unfolding in the allosteric mechanism of Par-6 suggests that native-state unfolding may be essential for the function of other marginally stable proteins
    corecore